Identification	Subject MATH 231, Applied Linear Algebra, 6 ECTS			
	Department			
	Program Undergraduate			
	Term	Fall, 2024		
	Instructor	Rza Mustafayev		
	E-mail:	rzamustafayev@gmail.com		
	Phone:	(+994) 50 634 26 16		
	Classroom/hours	Tuesday 17:00-18:30, 18:40-20:	10	
D	Office hours			
Prerequisites	MATH 102			
Language Compulsory/Elective	English			
Required textbooks	Compulsory David C. Lay, Linear Algebra and its Applications. 4 th edition, 2012			
and course materials				
Course website	Poole, D., Linear algebra: a modern introduction. 4 th Edition, 2014.			
Course outline	The course is an introduction to matrix theory and linear algebra and its			
	applications in different engineering fields, such as Matrices in Engineering,			
	Graphs and Networks, Markov Matrices, Linear Programming, Fourier			
	Series, Matrices in Statistics and Probability and Computer Graphics.			
	Vectors in n-space, systems of linear equations, Gaussian elimination, matrix			
	algebra, determinants, subspaces of n-space, basis and dimension,			
	eigenvalues and eigenvectors, diagonalization of a matrix, geometry of			
	vectors, projections, orthogonal sets of vectors, symmetric matrices			
Course objectives	Upon successfully completing this course students will be able to:			
	Formulate and solve multi-variable systems of linear equations;			
	Matrices classification and computations;			
	Describing fundamental facts in vector spaces;			
	Calculation of eigenvectors and eigenvalues;			
	Implementing	ng the mentioned concepts in engi	neering problems.	
Learning outcomes	Solving square systems by elimination			
	o Complete solution	on of system of linear equation		
	Least squares solutions			
	o Orthogonalization			
	Calculations of determinants			
	Calculation of Eigenvalues and eigenvectors			
		ices and positive definite matrices		
	 Symmetric matrices and positive definite matrices Basis and dimensions for linear transformations and change of basis 			
	 Applications of linear algebra in engineering 			
Teaching methods				
reaching memous			X	
	Assisted lab work		X	
Evaluation	Methods	Date/deadlines	Percentage (%)	
	1		5 \ /	

I	Midterm Exam		30
	Class Participation		5
	Quizzes		20 (2 quizzes)
	Activity		5
1	Final Exam		40
	Total		100
Policy	NO CELL PHONES are allowed during lecture and lab sessions.		

- NO CELL PHONES are allowed during lecture and lab sessions.
 PLEASE turn them off before lecture! (Not silent or vibrating mode).
 This is a university policy and violators will be reprimanded accordingly.
- No late assignments will be accepted without prior arrangement with the instructor for acceptable excuses. Medical and family emergency will be considered on case-by-case basis.
- No late homework will be accepted. Homework is to be completed on an individual basis. Students may discuss homework with classmates, but students are responsible for your own work. If students have consulted classmates, please note the individuals name on the top of students' assignment.
- Quizzes may be given unannounced throughout the term and will count as one homework. There will be no make-up quizzes.
- Students will be divided into groups of 3 individuals for study group sessions and will be assigned some problems to solve together in the class.
- If students should miss class due to personal emergency or medical reasons, please notify the instructor by email immediately. A doctor's note will be required for make-up work.
- Students are responsible for completing the reading assigned from the textbook related to the covered topics and for checking email regularly for important information and announcements related to the course.
- University policy on academic honesty concerning exams and individual work will be strictly enforced.
- BE ON TIME!

***	Date/Day	TD.	Textbook/Assignments
Week	(Tentative)	Topics	
1	17.09.24	Systems of linear equations.	1.1, 1.2
	17.09.24	Row reduction and Echelon forms.	
2	24.09.24	Vector equations.	1.3, 1.4
	24.09.24	The matrix equation $Ax = b$.	
3	01.10.24	Solution sets of linear systems.	1.5, 1.6
	01.10.24	Applications of linear systems.	
4	08.10.24	Linear independence.	1.7, 1.8
4	08.10.24	Introduction to linear transformations.	
5	15.10.24	The matrix of a linear transformations.	1.9, 2.1
	15.10.24	Matrix operations.	Quiz-1 (10 pts)
6	22.10.24	The inverse of a matrix.	2.2, 2.3
6	22.10.24	Characterizations of invertible matrices.	
7	29.10.24	Partitioned matrices.	2.4, 2.5
7	29.10.24	Matrix factorizations.	
8	05.11.24	Midterm Exam	
	05.11.24	Subspaces of R^n	
9	12.11.24	Characterizations of invertible matrices	2.8, 2.9
	12.11.24	Introduction to determinants. Dimension and rank.	3.1, 3.2
	19.11.24	Cramer`s rule, volume and linear transfor-	3.3, 4.1
10	19.11.24	mations. Vector spaces and subspaces.	Quiz-2 (10 pts)
11	26.11.24	Null spaces, column spaces and liner	4.2, 4.3
	26.11.24	transformations. Linearly independent sets; bases.	
12	03.12.24	Coordinate systems.	4.4, 4.5
	03.12.24	The dimension of a vector space equations.	
		1	1

13	10.12.2024	Rank. Change of bases.	4.6, 4.7
	10.12.2024		
	17.12.2024	Eigenvectors and eigenvalues.	5.1, 5.2
14	17.12.2024	The characteristic equation.	
	24.12.2024	Diagonalization.	5.3, 5.4
15	24.12.2024	Eigenvectors and liner transformations.	
	TBA	FINAL EXAM	

This syllabus is a guide for the course and any modifications to it will be announced in advance.